Network Analysis & Modeling

lecture 0: what are networks and how do we talk about them?

Prof. Aaron Clauset
Computer Science & BioFrontiers Institute
@aaronclauset
aaron.clauset@colorado.edu
who are network scientists?

Physicists
Computer Scientists
Applied Mathematicians
Statisticians
Biologists
Ecologists
Sociologists
Political Scientists

it’s a big community!
- different *traditions*
- different *tools*
- different *questions*

increasingly, not ONE community, but MANY, only loosely interacting communities
who are network scientists?

- Physicists: phase transitions, universality
- Computer Scientists: data / algorithm oriented, predictions
- Applied Mathematicians: dynamical systems, diff. eq.
- Statisticians: inference, consistency, covariates
- Biologists: experiments, causality, molecules
- Ecologists: observation, experiments, species
- Sociologists: individuals, differences, causality
- Political Scientists: rationality, influence, conflict
what are networks?

an approach.
a mathematical representation
provide structure to complexity.

structure that exists above
individuals / components

or: structure that exists below
system / population
tools and resources

Software

- R
- Python
- Matlab
- NetworkX [python]
- graph-tool [python, c++]
- GraphLab [python, c++]

Standalone editors

- UCI-Net
- NodeXL
- Gephi
- Pajek
- Network Workbench
- Cytoscape
- yEd graph editor
- Graphviz

Network data sets

- Colorado Index of Complex Networks

The Colorado Index of Complex Networks (ICON)

ICON is a comprehensive index of research-quality network data sets from all domains of network science, including social, web, information, biological, ecological, connectome, transportation, and technological networks.

Each network record in the index is annotated with and searchable or browsable by its graph properties, description, size, etc., and many records include links to multiple networks. The contents of ICON are curated by volunteer experts from Prof. Aaron Clauset’s research group at the University of Colorado Boulder.

Click on the NETWORKS tab above to get started.
1. develop a **network intuition** for reasoning about network phenomena

2. understand **network representations**, **basic terminology**, and **concepts**.

3. learn principles and methods for **describing and clustering network data**

4. learn to **predict missing network information**

5. understand how to **conduct and interpret** numerical network experiments, to **explore and test hypotheses** about networks

6. analyze and model **real-world network data**, using math and computation
course format

- course meets in-person in ECEE 283 + over Zoom
- lectures 2 times a week, some guest lectures and some class discussions
- biweekly problem sets (6 total)
- class project: proposal, presentation, final report
- all content via class Canvas (lecture notes, recordings, problem sets, submissions)
- **see syllabus** for all course policies
course schedule

week by week

1. fundamentals of networks
2. representations and summary statistics
3. simple random graphs
4. better random graphs
5. predicting missing node attributes
6. predicting missing links
7. community structure and mixing patterns
8. community structure models
9. spreading processes and cascades
10. spreading processes with structure (epidemics)
11. data incompleteness and sampling
12. ranking in networks
13. ethics and networks
14. student project presentations

- building intuition
- basic concepts, tools
- practical tools
- advanced tools
lessons learned

what’s difficult

1. students need to know many different things:

 - some probability: Erdos-Renyi, configuration, calculations
 - some mathematics: physics-style calculations, phase transitions
 - some statistics: basic data analysis, correlations, distributions
 - some machine learning: prediction, likelihoods, features, estimation algorithms
 - some programming: data wrangling, coding up measures and algorithms

2. can’t teach all of these things to all types of students!
 - vast amounts of advanced material in each of these directions
 - students have little experience / intuition of what makes good science
lessons learned

what works well

1. simple mathematical problems—build intuition & practice with concepts

calculate summary statistics

derive mathematical relations

spreading process on networks

clustering highly-structured networks
lessons learned

what works well

2. analyze real networks—test understanding & practice with implementing methods

what patterns really occur?

how much does randomness explain?
(when is a pattern interesting?)

stochastic block models
lessons learned

what works well

3. simple prediction tasks—test intuition & run numerical experiments

![Label prediction via homophily](image1)

![Link prediction via heuristic](image2)
lessons learned

what works well

4. simple simulations—explore dynamics vs structure & numerical experiments

simulate epidemics (SIR) on planted partitions

simulate Price’s model
lessons learned

what works well

4. team projects—teamwork & exploring their (your!) own ideas
key takeaways

• **network intuition is hard to develop!**
 good intuition draws on many skills
 (probability, statistics, computation, causal dynamics, etc.)

• best results come from
 1. exercises to get practice with calculations
 2. practice analyzing diverse real-world networks
 3. conducting out numerical experiments & simulations

• practical tasks are a pedagogical tool (e.g., link and label prediction)
• interpreting the results requires a good *intuition* and to *think like a scientist*
• null models are key concept: is a pattern interesting? what could explain it?
• networks are fun!